<table>
<thead>
<tr>
<th>Title</th>
<th>Lupe Latin squares of order odd, 3-odd, $A^2 + 3B^2$ with $\gcd(A,B) = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Azukawa, Kazuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Toyama mathematical journal, 34: 1-22</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>Text version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10110/9714</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>
Lupe Latin squares of order odd, 3-odd, $A^2 + 3B^2$
with $\text{gcm}(A, B) = 1$

Kazuo Azukawa

Abstract. Let p be an odd integer which is written as $p = A^2 + 3B^2$ with $\text{gcm}(A, B) = 1$ and which is non-divisible by 3. We define (1,3)-Lupe and (3,1)-Lupe properties of a Latin p-square or a magic p-square. For any such p, we construct complete Latin p-squares N_+^+, N_-^+ of (1,3)-Lupe property, and N_+^-, N_-^- of (3,1)-Lupe property. We show that the products $N_+^+ \times N_-^+$ and $N_+^- \times N_-^-$ are Euler squares, so that $pN_+^+ + N_-^+$ and $pN_+^- + N_-^-$ are complete magic squares of (1,3)-Lupe property (resp. (3,1)-Lupe property).

1. Odd and 3-odd numbers $A^2 + 3B^2$ with $\text{gcm}(A, B) = 1$

We start with the following lemma:

Lemma 1. If $A, B \in \mathbb{N}$ and $\text{gcm}(A, B) = 1$, then there exist unique $(a, b), (a', b') \in \{0, \ldots, A\} \times \{0, \ldots, B\} \setminus \{(0, 0), (A, B)\}$ such that $bA - aB = 1$ and $b'A - a'B = -1$. For these it holds that $(a, b) + (a', b') = (A, B)$.

Proof. To prove the existence, let

$$\frac{B}{A} = a_0 + \frac{1}{a_1 +} \frac{1}{a_2 +} \cdots \frac{1}{a_{n-1} +} \frac{1}{a_n}$$

be the continued fraction expansion of the number B/A such that $a_0 \in \{0\} \cup \mathbb{N}$, $a_j \in \mathbb{N}(n \geq j \geq 1)$ and that $a_n \geq 2$ whenever $n \geq 1$. Let

$$\frac{y}{x} = a_0 + \frac{1}{a_1 +} \frac{1}{a_2 +} \cdots \frac{1}{a_{n-2} +} \frac{1}{a_{n-1}}$$

1
with \(x, y \in \mathbb{Z}, x \geq 0, \gcd(x, y) = 1\) (when \(n = 0, (x, y) = (0, 1)\))(cf. [A-Y]). Then, \((x, y) \in \{0, \ldots, A - 1\} \times \{0, \ldots, B\} \setminus \{(0, 0)\}\) and \(yA -xB = (-1)^n\); furthermore if \((x', y') := (A - x, B - y), then (x', y') \in \{1, \ldots, A\} \times \{0, \ldots, B\} \setminus \{(A, B)\}\) and \(y'A - x'B = (-1)^{n+1}\). If \(n\) is even (resp. odd), then \((a, b) = (x, y), (a', b') = (x', y')\) (resp. \((a, b) = (x', y'), (a', b') = (x, y)\)) have the desired properties. The uniqueness and the latter half of the assertions are easy to prove.

From now on we assume that \(p \in \mathbb{N}\) and \((A, B) \in \mathbb{N}^2\) satisfy

\[(1)\quad p = A^2 + 3B^2,\]

\[(2)\quad \gcd(A, B) = 1,\]

\[(3)\quad p\text{ is odd,}\]

\[(4)\quad p\text{ is not divisible by } 3.\]

We may call property (4) \(p\) being 3-\textbf{odd}. Take \((a, b), (a', b') \in \{0, \ldots, A\} \times \{0, \ldots, B\} \setminus \{(0, 0), (A, B)\}\) satisfying

\[(5)\quad bA - aB = 1\quad \text{and}\]

\[(6)\quad b'A - a'B = -1\]

as in Lemma 1 and set

\[(7)\quad q := aA + 3bB, \quad q' := a'A + 3b'B.\]

We note that

\[(8)\quad q + q' = p,\]

\[(9)\quad qA = ap + 3B, \quad qB = bp - A,\]

\[(10)\quad q'A = a'p - 3B, \quad q'B = b'p + A.\]
It follows from (1),(2), and (3) that

\[(11) \quad A + B \text{ is odd;}
\]

especially

\[(12) \quad A \neq B.\]

Lemma 2. Let \(p, A, B\) satisfy (1)-(4) and \(q, q'\) be defined by (7). Then \(\gcd(q, p) = 1\) and \(\gcd(q', p) = 1\).

Proof. It follows from (1) and (4) that \(A\) is not divisible by 3, so that \(\gcd(A, 3B) = 1\) by (2). Take \(\ell, m \in \mathbb{Z}\) such that \(\ell A + m3B = 1\). It follows from (9) that \(\ell(bp - qB) + m(qA - ap) = 1\), so that \((-\ell B + mA)q + (\ell b - ma)p = 1\); therefore, \(\gcd(q, p) = 1\). Since \(q' = p - q\) by (8), \(\gcd(q', p) = \gcd(p - q, p) = \gcd(q, p) = 1\), as desired.

Lemma 3. Let \(p, a, b, q, q'\) be as in Lemma 2. Then

\[(13) \quad p(a^2 + 3b^2) - q^2 = 3, \quad p(a'^2 + 3b'^2) - q'^2 = 3,
\]

\[(14) \quad qq' \equiv 3 \pmod{p}.
\]

Proof. The identity

\[(A^2 + 3B^2)(x^2 + 3y^2) = (xA + 3yB)^2 + 3(yA - xB)^2
\]

implies (13). It follows from (8) and (13) that \(qq' = q(p - q) \equiv -q^2 \equiv 3 \pmod{p}\), as desired.

Remark 4. It is well known that for every \(p \in \mathbb{N}\), which is odd and 3-odd, the following seven statements are mutually equivalent (cf. [H]):

(i) There exists \((A, B) \in \mathbb{N}^2\) such that \(p = A^2 + 3B^2\) with \(\gcd(A, B) = 1\).

(ii) There exists \((X, Y) \in \mathbb{N}^2\) such that \(p = X^2 + Y^2 + XY\) with \(\gcd(X, Y) = 1\).

(iii) There exists \(q \in \mathbb{N}\) such that \(q^2 \equiv -3 \pmod{p}\).

(iv) For every prime \(p'\) with \(p'|p\), it holds that \(p' \equiv 1 \pmod{3}\).
(v) For every prime p' with $p'|p$, there exists $(A, B) \in \mathbb{N}^2$ such that $p' = A^2 + 3B^2$ with $\gcd(A, B) = 1$.

(vi) For every prime p' with $p'|p$, there exists $(X, Y) \in \mathbb{N}^2$ such that $p' = X^2 + Y^2 + XY$ with $\gcd(X, Y) = 1$.

(vii) For every prime p' with $p'|p$, there exists $q \in \mathbb{N}$ such that $q^2 \equiv -3 \pmod{p'}$.

A proof of implication (i)\Rightarrow(iii) has been given in the proof of Lemma 3.

From (iv), every p satisfying one of (i)-(vii), $p \equiv 1 \pmod{3}$.

For completeness we shall prove the equivalence of (i) and (ii), so that of (v) and (vi). We first note the following:

If $p = A^2 + 3B^2$, $A, B \in \mathbb{N}$, then $p = (A + B)^2 + 2B(B - A)$, so that

$$2|p \iff 2|(A + B); \quad \text{and}$$

$$3|p \iff 3|A.$$

If $p = X^2 + Y^2 + XY$, $X, Y \in \mathbb{N}$, then $p = (X - Y)^2 + 3XY$, so that

$$2|p \iff 2|X \text{ and } 2|Y; \quad \text{and}$$

$$3|p \iff 3|(X - Y).$$

Set

$$E_1 := \{(X, Y) \in \mathbb{N}^2 | X \text{ is odd, } Y \text{ is even}\},$$

$$E_2 := \{(X, Y) \in \mathbb{N}^2 | X, Y \text{ are odd, } Y > X\},$$

and $E := E_1 \cup E_2$. Set

$$F_1 = \{(A, B) \in \mathbb{N}^2 | A + B \text{ is odd, } A > B\},$$

$$F_2 = \{(A, B) \in \mathbb{N}^2 | A + B \text{ is odd, } A < B\},$$

and $F := F_1 \cup F_2$. Then the set

$$\{p = X^2 + Y^2 + XY | X, Y \in \mathbb{N}, X \neq Y, \ p \text{ is odd}\}$$

is uniquely parametrized by E, and the set

$$\{p = A^2 + 3B^2 | A, B \in \mathbb{N}, p \text{ is odd}\}$$
is by F. Let $\Phi : E \to F$ be defined by

$$E_1 \ni (X, Y) \mapsto (X + Y/2, Y/2) \in F_1,$$

$$E_2 \ni (X, Y) \mapsto ((Y - X)/2, (Y + X)/2) \in F_2,$$

and $\Psi : F \to E$ be by

$$F_1 \ni (A, B) \mapsto (A - B, 2B) \in E_1,$$

$$F_2 \ni (A, B) \mapsto (B - A, A + B) \in E_2.$$

Then, $\Phi \circ \Psi = \text{id}_F$ and $\Psi \circ \Phi = \text{id}_E$. Furthermore, if $\Phi(X, Y) = (A, B)$, then

$$3|(X - Y) \iff 3|A; \quad \text{and}$$

$$\gcd(X, Y) = 1 \iff \gcd(A, B) = 1.$$

This proves the equivalence of (i) and (ii).

A typical example of numbers satisfying (ii) is the hex numbers $h_n := n^2 + (n + 1)^2 + n(n + 1) = 3n^2 + 3n + 1 = (n + 1)^3 - n^3$ ($n = 1, 2, \ldots$).

2. Constructions of N^+_ℓ and N^-_ℓ

Let $\ell \in \mathbb{N}$. For $\alpha \in \mathbb{Z}$, let $r_\ell(\alpha)$ denote the remainder of α divided by ℓ; therefore, $r_\ell(\alpha) \in \{0, 1, \ldots, \ell - 1\}$. For $\alpha, \beta \in \mathbb{Z}$ with $\alpha < \beta$, define

$$[\alpha, \beta]_\ell := \{r_\ell(i)|i = \alpha, \alpha + 1, \ldots, \beta\}.$$

Especially, $[1, \ell]_\ell = \{0, 1, \ldots, \ell - 1\}$. An ℓ-square matrix M with entries in a set X is considered as a mapping from $[1, \ell]_\ell^2$ into X, and written as $M = (M_{ij})_{(i,j)\in[1,\ell]_\ell^2} = (M_{ij})_{i,j}$. We also write $M_{ij} = M(i, j)$.

Definitions. (i) For an integer $\ell \geq 3$, a **Latin** (resp. **magic**) ℓ-square is an ℓ-square matrix $[1, \ell]_\ell^2 \to [1, \ell]_\ell$ (resp. an ℓ-square bijective matrix $[1, \ell]_\ell^2 \to [1, \ell]_\ell^2$) whose restrictions to all rows and all columns are surjective (resp. are of sum $m_\ell := \ell(\ell^2 - 1)/2$).

(ii) A Latin (resp. magic) ℓ-square is called **complete** if all 2ℓ general
diagonals are also surjective (resp. are also of sum m_ℓ).

Now, let p, A, B satisfying (1)-(4) be fixed. Let $(a, b), (a', b') \in \{0, \ldots, A\} \times \{0, \ldots, B\}\setminus\{(0,0), (A, B)\}$ satisfy (5),(6), and q, q' be given by (7). Let N_+^\pm, resp. N_-^\pm, and N_- : $[1, p]^2_\ell \to [1, p]_\ell$ be defined by

\[(N_+^\pm)_{ij} := r_p(iq + j) \quad \text{(resp.)} \]
\[(N_-^\pm)_{ij} := r_p(iq' + j), \]
\[(N_-^-)_{ij} := r_p(iq + 3j), \quad \text{and} \]
\[(N_-^-)_{ij} := r_p(iq' + 3j)). \]

Lemma 5. Assume $A > B$. If

\[P = [0, A - 1]_\ell^2, \quad Q = [0, B - 1]_\ell \times [A, A + 3B - 1]_\ell, \]

then the image $N_+^\pm(P \cup Q) = [1, p]_\ell$.

Proof. As in the proof of Proposition 5 in [A], we consider an auxiliary matrix \(L = (L_{ij})_{ij} : [0, A]_{A+B} \times [0, a+b-1]_{A+B} \to [1, A+B]_{A+B}, \) defined by

\[(L_{ij}) := r_{A+B}(i(a + b) + j) \]

for $(i, j) \in [0, A]_{A+B} \times [0, a + b - 1]_{A+B}$. It follows from

\[A(a + b) - a(A + B) = 1 \]

that for $j = 0, \ldots, a + b - 2$,

\[(LA_j = L_{0,j+1}. \]

Set \(\ell := (r_{A+B}(0), r_{A+B}(a + b), \ldots, r_{A+B}((A - 1)(a + b))), \)
Because of (20), we have

\[(\text{Image } \ell) \cup (\text{Image } s) = \{0, 1, \ldots, A + B - 1\}, \]

\[r_{A+B}(a+b) = 1, \quad \text{and} \]

\[s = (r_{A+B}(1), r_{A+B}((a+b) + 1), \ldots, r_{A+B}((B - 1)(a+b) + 1)). \]

By (19), \(r_{A+B}(a+b) \) coincides with the first column of \(L \), and \(s \) coincides with the first \(B \) components of the second column of \(L \). We call the numbers in \(\ell \) are of \textbf{long label} and in \(s \) of \textbf{short label}. Let \(L' \) be the restriction of \(L \) to the set \([0, A - 1]_{A+B} \times [0, a + b - 1]_{A+B} \). It follows from (19) and (20) that

\begin{equation}
\ell_j = \begin{cases}
(u + 1, u + 2, \ldots, u + \ell), & \ell + 1 \text{ is of short label} \\
(u + 1, u + 2, \ldots, u + A), & \ell + 1 \text{ is of long label}.
\end{cases}
\end{equation}

The last row of \(L' \) have \(a + 1 \) numbers of long label, \(b - 1 \) numbers of short label and its final component is of long label. For details refer the proof of Proposition 5 in [A]. We construct vectors \(\ell_0, \ell_1, \ldots, \ell_{A+B-1} \) inductively as follows: set \(\ell_0 := (0, 1, \ldots, A - 1) \); constructed \(\ell_j = (\ldots, u) \), we set

\begin{equation}
\ell_j := \begin{cases}
(u + 1, u + 2, \ldots, u + 3B), & j + 1 \text{ is of short label} \\
(u + 1, u + 2, \ldots, u + A), & j + 1 \text{ is of long label}.
\end{cases}
\end{equation}

Because of \(A^2 + 3B^2 = p \) we have \(\ell_{A+B-1} = (\ldots, p - 1) \). It follows that, for every \(j \in \{0, 1, \ldots, (A + 1)(a + b) - 2\} \), if \(\ell_{r_{A+B}(j)} = (\ldots, u) \), then \(\ell_{r_{A+B}(j+1)} = (r_p(u+1), \ldots) \). It follows from (22) that among \(\ell_0, \ldots, \ell_{a+b-1} \), we have \(a \) long vectors and \(b \) short ones, so that \(\ell_{a+b-1} = (\ldots, q-1) \). Hence, \(\ell_{a+b} = (q, \ldots) \). Inductively, we have \(\ell_{r_{A+B}(j(a+b)-1)} = (\ldots, r_p(jq - 1)), \)

\(\ell_{r_{A+B}(j(a+b))} = (r_p(jq), \ldots) \), for \(j = 1, \ldots, A - 1 \), so that the matrix

\[
\begin{bmatrix}
\ell_0 & \ell_1 & \ldots & \ell_{a+b-1} \\
\ell_{r_{A+B}(a+b)} & \ell_{r_{A+B}(a+b+1)} & \ldots & \ell_{r_{A+B}(2(a+b)-1)} \\
\vdots & \vdots & \ddots & \vdots \\
\ell_{r_{A+B}((A-1)(a+b))} & \ell_{r_{A+B}((A-1)(a+b)+1)} & \ldots & \ell_{r_{A+B}(A(a+b)-1)}
\end{bmatrix}
\]
coincides with \(N_+^\ast |_{[0,A-1]} \times [0,q-1] \), where \(\ell^*(A(a+b)-1) \) is \(\ell_0 |_{[0,3B-1]} \) if \(A \geq 3B \), and is \((\ell_0,\ell_1 |_{[0,3B-A-1]})\) if \(A < 3B \) (by (20), \(r_{A+B}(A(a+b)-1) = 0 \)). It follows that
\[
N_+^\ast |_{P} = \ell(\ell_{r_{A+B}(0)}, \ell_{r_{A+B}(a+b)}, \ldots, \ell_{r_{A+B}((A-1)(a+b))})
\]
and
\[
N_+^\ast |_{Q} = \ell(\ell_{r_{A+B}(1)}, \ell_{r_{A+B}(a+b+1)}, \ldots, \ell_{r_{A+B}((B-1)(a+b)+1)}).
\]
Since the union of
\[
\{r_{A+B}(0), r_{A+B}(a+b), \ldots, r_{A+B}((A-1)(a+b))\} \quad \text{and} \quad \{r_{A+B}(1), r_{A+B}((a+b)+1), \ldots, r_{A+B}((B-1)(a+b)+1)\}
\]
coincides with
\[
(\text{Image } \ell) \cup (\text{Image } s) = \{0,1,\ldots,A+B-1\},
\]
it follows that
\[
N_+^\ast (P \cup Q) = \bigcup_{j=0}^{A+B-1} \text{Image } \ell_j = \{0,\ldots,p-1\},
\]
as desired.

Lemma 6. Assume \(B > A \). If
\[
Q = [0, B-1] \times [0,3B-1], \quad P = [0, A-1] \times [3B, 3B+A-1],
\]
then the image \(N_+^\ast (P \cup Q) = [1,p] \).

Proof. Let a matrix \(L : [0, B]_{A+B} \times [0,a'+b'-1]_{A+B} \rightarrow [1, A+B]_{A+B} \) be defined by
\[
L_{ij} := r_{A+B}(i(a'+b')+j)
\]
for \((i,j) \in [0, B]_{A+B} \times [0,a'+b'-1]_{A+B}\). Since
\[
-b'(B+A) + B(a' + b') = 1
\]
we have for \(j = 0, \ldots, a' + b' - 2 \),

\[
(25) \quad L_{Bj} = L_{0,j+1}.
\]

Set

\[
\ell := (r_{A+B}(0), r_{A+B}(a' + b'), \ldots, r_{A+B}((B - 1)(a' + b'))),
\]

\[
s := (r_{A+B}(B(a' + b')), r_{A+B}((B+1)(a' + b')), \ldots, r_{A+B}((B+A-1)(a' + b'))).
\]

By (24),

\[
(\text{Image } \ell) \cup (\text{Image } s) = \{0, 1, \ldots A + B - 1\},
\]

\[
r_{A+B}(B(a' + b')) = 1, \quad \text{and}
\]

\[
s = (r_{A+B}(1), r_{A+B}((a' + b') + 1), \ldots, r_{A+B}((A - 1)(a' + b') + 1)).
\]

By (23), \(^t(\ell, r_{A+B}(B(a' + b'))) \) coincides with the first column of \(L \), and \(^t s \) coincides with the first \(A \) components of the second column of \(L \). As before we call the numbers in \(\ell \) are of \textbf{long label} and in \(s \) of \textbf{short label}. Let \(L' \) be the restriction of \(L \) to the set \([0, B - 1]_{A+B} \times [0, a' + b' - 1]_{A+B} \). We have

\[
(26) \quad \left\{ \begin{array}{l}
\text{in every row of } L', \text{ except the last one, there are } \\
b' \text{ numbers of long label and } a' \text{ numbers of short label.}
\end{array} \right.
\]

As before, we set \(\ell_0 := (0, 1, \ldots, 3B - 1) \). Constructed \(\ell_j = (\ldots, u) \), we set

\[
\ell_{j+1} := \left\{ \begin{array}{l}
(u + 1, u + 2, \ldots, u + A), \quad j + 1 \text{ is of short label} \\
(u + 1, u + 2, \ldots, u + 3B), \quad j + 1 \text{ is of long label}
\end{array} \right.
\]

for \(j = 0, \ldots, A + B - 2 \), so that \(\ell_{A+B-1} = (\ldots, p - 1) \). It follows from (26) that among \(\ell_0, \ldots, \ell_{a'+b'-1} \), we have \(b' \) long vectors and \(a' \) short ones, so that \(\ell_{a'+b'-1} = (\ldots, q' - 1) \), and \(\ell_{a'+b'} = (q', \ldots) \). Hence \(\ell_{r_{A+B}(j(a'+b')-1)} = (\ldots, r_p(jq' - 1)) \), \(\ell_{r_{A+B}(j(a'+b'))} = (r_p(jq'), \ldots) \), for \(j = 1, \ldots, B - 1 \). As before, we have

\[
N^+_Q = ^t(\ell_{r_{A+B}(0)}, \ell_{r_{A+B}(a'+b')}, \ldots, \ell_{r_{A+B}((B-1)(a'+b'))})
\]

and

\[
N^+_P = ^t(\ell_{r_{A+B}(1)}, \ell_{r_{A+B}(a'+b'+1)}, \ldots, \ell_{r_{A+B}((A-1)(a'+b')+1)}).
\]
Since the union of
\[\{r_{A+B}(0), r_{A+B}(a'+b'), \ldots, r_{A+B}((B-1)(a'+b'))\} \]
and
\[\{r_{A+B}(1), r_{A+B}((a'+b')+1), \ldots, r_{A+B}((A-1)(a'+b')+1)\} \]
coincides with
\[(\text{Image } \ell) \cup (\text{Image } s) = \{0, 1, \ldots, A + B - 1\}, \]
we have
\[N_+^+(P \cup Q) = \bigcup_{j=0}^{A+B-1} \text{Image } \ell_j = \{0, \ldots, p-1\}, \]
as desired.

For \((u, v) \in \mathbb{Z}^2\), we denote by \(T_{(u, v)}\) the \((u, v)\)-translation of the space \([1, p]_p^2\), that is \([1, p]_p^2 \ni (i, j) \mapsto (r_p(i+u), r_p(j+v)) \in [1, p]_p^2\).

Lemma 7. Let \(D \subset [1, p]_p^2\) with \(\text{Card } D = p\). For \((u, v) \in \mathbb{Z}^2\), set \(T := T_{(u, v)}\). Let \(N\) be one of \(N_+^+, N_-^+, N_+^-, N_-\).
If \(N(D) = [1, p]_p\), then \(N(T(D)) = [1, p]_p\).

Proof. We have
\[
(N_+^+)_{T(i,j)} - (N_+^+)_{ij} = r_p(r_p(i+u)q + r_p(j+v)) - r_p(iq+j) \\
\equiv (i+u)q + (j+v) - (iq+j) \pmod p \\
\equiv uq + v.
\]
Hence
\[
(N_+^+)_{T(i,j)} = r_p((N_+^+)_{ij} + uq + v),
\]
so that
\[
N_+^+(T(D)) = \{(N_+^+)_{kl}(k, \ell) \in T(D)\} \\
= \{(N_+^+)_{T(i,j)}|(i, j) \in D\} \\
= \{r_p((N_+^+)_{ij} + uq + v)|(i, j) \in D\} \\
= r_p\{(N_+^+)_{ij}|(i, j) \in D\} + uq + v)
Lupe Latin squares of order odd, 3-odd, \(A^2 + 3B^2 \) with \(\gcd(A, B) = 1 \)

\[
= r_p([1, p]_p + uq + v) \\
= r_p(\{i + uq + v | i \in [1, p]_p\}) \\
= [1, p]_p.
\]

The assertion for \(N^+_1 \) has been proved. Similarly, we have

\[
(N^+_1)_{T(i, j)} = r_p((N^+_1)_{ij} + uq' + v), \\
(N^-_1)_{T(i, j)} = r_p((N^-_1)_{ij} + uq + 3v), \\
(N^-_1)_{T(i, j)} = r_p((N^-_1)_{ij} + uq' + 3v).
\]

From these, the assertions for \(N^+_1, N^-_1, N^- \) follow.

Lemma 8. Assume \(B > A \). If

\[
Q = [0, B - 1]_p \times [0, 3B - 1]_p, \quad P = [B - A, B - 1]_p \times [3B, 3B + A - 1]_p,
\]

then the image \(N^+_1(P \cup Q) = [1, p]_p \).

Proof. By Lemma 7, to prove the assertion, we may show that if

\[
Q' = [1, B]_p \times [0, 3B - 1]_p, \quad P' = [B - A + 1, B]_p \times [3B, 3B + A - 1]_p
\]

then \(N^+_1(P' \cup Q') = [1, p]_p \). Let \(R_0 : [1, p]^2_+ \rightarrow [1, p]^2_+ \) be the transformation given by

\[
(27) \quad [1, p]^2_+ \ni (i, j) \mapsto (r_p(p - i), j) \in [1, p]^2_+.
\]

Let \(CP \) be the cut-and-paste between the first row and the remainder of the space \([1, p]^2_+\), that is \([1, p]^2_+ \ni (i, j) \mapsto (r_p(i - 1), j) \in [1, p]^2_+ \), and \(R \) be the reflection of the space \([1, p]^2_+\) w.r.t. the center row of that space, that is \([1, p]^2_+ \ni (i, j) \mapsto (p - 1 - i, j) \in [1, p]^2_+ \). Since \(R_0 = R \circ CP \), the geometry of the transformations \(CR \) and \(R \) implies \(R_0(Q' \cup P') = Q_0 \cup P_0 \), where

\[
Q_0 = [p - B, p - 1]_p \times [0, 3B - 1]_p, \quad P_0 = [p - B, p - B + A - 1]_p \times [3B, 3B + A - 1]_p.
\]

Since \(R_0 \circ R_0 = \text{id} \),

\[
(28) \quad Q' \cup P' = R_0(Q_0 \cup P_0).
\]
If
\[
N_+^+ := N_+^+ \circ R_0,
\]
then in view of definitions (15),(16), and (27) we have
\[
N_+^+ = N_+^+.
\]
It follows from (28),(29),(30) that
\[
N_+^+(Q' \cup P') = N_+^+(R_0(Q_0 \cup P_0)) = N_+^+(Q_0 \cup P_0).
\]
If
\[
Q_1 = [0, B-1]_p \times [0, 3B-1]_p, \quad P_1 = [0, A-1]_p \times [3B, 3B + A-1]_p,
\]
then Lemma 6 implies $N_+^+(Q_1 \cup P_1) = [1, p]_p$. Since $Q_0 \cup P_0$ is a translation of $Q_1 \cup P_1$, Lemma 7 implies $N_+^+(Q_0 \cup P_0) = [1, p]_p$; combining (31) we have $N_+^+(Q' \cup P') = [1, p]_p$, as desired.

Lemma 9. Assume $A > B$. If

\[
P = [0, A-1]_p^2, \quad Q = [A-B, A-1]_p \times [A, A+3B-1]_p,
\]
then the image $N_+^+(P \cup Q) = [1, p]_p$.

Proof. By Lemma 7, we may show that if

\[
P' = [1, A]_p \times [0, A-1]_p, \quad Q' = [A-B+1, A]_p \times [A, A+3B-1]_p,
\]
then $N_+^+(P' \cup Q') = [1, p]_p$. As in the proof of Lemma 8, if

\[
P_0 = [p-A, p-1]_p \times [0, A-1]_p, \quad Q_0 = [p-A, p-A+B-1]_p \times [A, A+3B-1]_p,
\]
then $N_+^+(P' \cup Q') = N_+^+(P_0 \cup Q_0)$. If

\[
P_1 = [0, A-1]_p^2, \quad Q_1 = [0, B-1]_p \times [A, A+3B-1]_p,
\]
then $P_0 \cup Q_0$ is a translation of $P_1 \cup Q_1$; therefore Lemma 5 implies $N_+^+(P' \cup Q') = N_+^+(P_1 \cup Q_1) = [1, p]_p$, as desired.
Lemma 10. We have:

(32) \[N_+^+ \circ T_{(-A,3B)} = N_+^+ \], \[N_+^+ \circ T_{(B,A)} = N_+^+ \];
(33) \[N_+^+ \circ T_{(-B,A)} = N_+^+ \], \[N_+^+ \circ T_{(A,3B)} = N_+^+ \].

Proof. By (9) we have \(qA \equiv 3B, qB \equiv -A \pmod{p} \), so that (32) follows. In fact,
\[N_+^+ \circ T_{(-A,3B)}(i, j) = r_p(q(i - A) + j + 3B) = r_p(qi + j) = N_+^+(i, j), \]
etc. By (10) we have \(q'A \equiv -3B, q'B \equiv A \pmod{p} \), so that (33) follows.

q.e.d.

Proposition 11. If
\[P = [0, A - 1]^2_p, \quad Q = [0, B - 1]_p \times [A, A + 3B - 1]_p, \]
then \(N_+^+(P \cup Q) = [1, p]_p \).

Proof. When \(A > B \), the assertion is Lemma 5. Assume \(A < B \). By Lemma 8, combining Lemma 7 we have \(N_+^+(P' \cup Q) = [1, p]_p \), where
\[P' = [B - A, B - 1]_p \times [A + 3B, A + 3B + A - 1]_p. \]
Since \(P' = T_{(-A,3B)} \circ T_{(B,A)}(P) \), (32) implies \(N_+^+(P \cup Q) = N_+^+(P' \cup Q) = [1, p]_p \), as desired.

Proposition 12. If
\[P = [0, A - 1]^2_p, \quad Q = [A - B, A - 1]_p \times [A, A + 3B - 1]_p, \]
then \(N_+^+(P \cup Q) = [1, p]_p \).

Proof. When \(B < A \), the assertion is Lemma 9. Assume \(B > A \). By Lemma 6 combining Lemma 7 we get \(N_+^+(P \cup Q') = [1, p]_p \), where
\[Q' = [0, B - 1]_p \times [p - 3B, p - 1]_p. \]
Since \(Q = T_{(-B,A)} \circ T_{(A,3B)}(Q') \), (33) implies \(N_+^+(P \cup Q) = N_+^+(P \cup Q') = [1, p]_p \), as desired.
3. Lupe properties of Latin squares and magic squares

Let $p, A, B, a, b, a', b', q,$ and q' be as in the preceding section. Set

$$d := \frac{p - (A + B)}{2} = \frac{A^2 + 3B^2 - (A + B)}{2} = \frac{A(A - 1)}{2} + B^2 + B(B - 1) \in \mathbb{N},$$

and $d' := d - B$.

Definition. A pair (P, Q) of an A-square

$$P = [\alpha, \alpha + A - 1]_p \times [\beta, \beta + A - 1]_p$$

and a $(B, 3B)$-rectangle

$$Q = [\gamma, \gamma + B - 1]_p \times [\delta, \delta + 3B - 1]_p$$

(resp. $(3B, B)$-rectangle

$$Q = [\gamma, \gamma + 3B - 1]_p \times [\delta, \delta + B - 1]_p)$$

in $[1, p]_p^2$ is called $(A, (B, 3B))$-antipodal (resp. $(A, (3B, B))$-antipodal) if

$$\gamma - \alpha \equiv A + d, \quad \delta - \beta \equiv A + d'(\text{mod } p)$$

(resp.

$$\gamma - \alpha \equiv A + d', \quad \delta - \beta \equiv A + d(\text{mod } p)),$$

that is if the bidistance between P and Q is (d, d') (resp. $(d', d))$.

Definition. A p-square matrix $M : [1, p]_p^2 \rightarrow [1, p]_p^2$ is called of $(1, 3)$-Lupe (resp. $(3, 1)$-Lupe) property if for any $(A, (B, 3B))$-antipodal (resp. $(A, (3B, B))$-antipodal) pair (P, Q) in $[1, p]_p^2$, the restriction of M to $P \cup Q$ is surjection.

A square matrix $M : [1, p]_p^2 \rightarrow [1, p^2]_{p^2}$ is called of $(1, 3)$-Lupe (resp. $(3, 1)$-Lupe) property if for any $(A, (B, 3B))$-antipodal (resp. $(A, (3B, B))$-antipodal) pair (P, Q) in $[1, p]_p^2$, the restriction of M to $P \cup Q$ possesses the sum $m_p = p(p^2 - 1)/2$.
We note that for a \(p \)-square matrix \(M : [1, p]_p^2 \to [1, p]_p \) or \(M : [1, p]_p^2 \to [1, p^2]_{p^2} \), \(M \) is of \((1, 3)\)-Lupe property if and only if \(^t M \) is of \((3, 1)\)-Lupe property.

Lemma 13. It holds that \((q + 1)d \equiv -2B, \ (q' + 1)d \equiv -A + B \pmod{p}\).

Proof. By definition of \(d \) as well as (9), we have

\[
(q + 1)d = \frac{1}{2}(q + 1)(p - (A + B))
\]

\[
= \frac{1}{2}((q + 1)p - q(A + B) - (A + B))
\]

\[
= \frac{1}{2}((q + 1)p - (ap + 3B + bp - A) - (A + B))
\]

\[
= -2B + \frac{1}{2}(q + 1 - (a + b))p,
\]

so that \(2((q + 1)d + 2B) = (q + 1 - (a + b))p\). Since \(\gcd(p, 2) = 1\), \(2\mid (q + 1 - (a + b))\). It follows that \((q + 1)d \equiv -2B \pmod{p}\). Similarly, using (10) we have

\[
(q' + 1)d = \frac{1}{2}(q' + 1)(p - (A + B))
\]

\[
= B - A + \frac{1}{2}(q' + 1 - (a' + b'))p,
\]

so that \(2((q' + 1)d - B + A) = (q' + 1 - (a' + b'))p\). Similar argument implies \(2((q' + 1) - (a' + b'))\), so that \((q' + 1)d \equiv -A + B \pmod{p}\), as desired.

Lemma 14. It holds that

\[
\gcd(q + 1, p) = 1, \quad \gcd(q' + 1, p) = 1;
\]

\[
\gcd(q - 1, p) = 1, \quad \gcd(q' - 1, p) = 1;
\]

\[
\gcd(q + 3, p) = 1, \quad \gcd(q' + 3, p) = 1;
\]

\[
\gcd(q - 3, p) = 1, \quad \gcd(q' - 3, p) = 1.
\]

Proof. By (9) we have

\[
(q + 1)A \equiv 3B + A \pmod{p},
\]
(35) \((q + 1)B \equiv B - A \pmod{p}\).

Since
\[
gcm(3B + A, B - A) = gcm(4B, B - A) = gcm(B, B - A) \ (\text{because } B - A \text{ is odd}) = gcm(B, -A) = gcm(A, B) = 1,
\]
there exist \(\ell, m \in \mathbb{Z}\) such that \(\ell(3B + A) + m(B - A) = 1\). Substituting (34), (35), we have
\[
\ell(q + 1)A + m(q + 1)B \equiv 1 \pmod{p}.
\]
It follows that \(gcm(q + 1, p) = 1\).

By (10) we have
\[
(q' + 1)A \equiv -3B + A, \quad (q' + 1)B \equiv A + B \pmod{p}.
\]
Since
\[
gcm(-3B + A, A + B) = gcm(-4B, A + B) = gcm(B, A + B) \ (\text{because } A + B \text{ is odd}) = gcm(A, B) = 1,
\]
similar argument as in the first part implies \(gcm(q' + 1, p) = 1\).

By (9) we have
\[
(q + 3)A \equiv 3(A + B), \quad (q + 3)B \equiv -A + 3B \pmod{p}.
\]
Since
\[
gcm(3(A + B), -A + 3B) = gcm(3(A + B), -4A) = gcm(3(A + B), A) \ (\text{because } 3(A + B) \text{ is odd}) = gcm(A + B, A) \ (\text{because } A \text{ is 3-odd}) = gcm(A, B) = 1,
\]
similarly we have $\gcd(q + 3, p) = 1$

By (10) we have

$$(q' + 3)A \equiv 3(A - B), \quad (q' + 3)B \equiv A + 3B \pmod{p}.$$

Since

$$\gcd(3(A - B), A + 3B) = \gcd(4A, A + 3B) = \gcd(A, A + 3B) \quad \text{(because A + 3B is odd)}$$

$$= \gcd(A, 3B) = \gcd(A, B) = 1 \quad \text{(because A is 3-odd)},$$

similarly we have $\gcd(q' + 3, p) = 1$.

The other four assertions follow from the facts

$$q - 1 \equiv -(q' + 1), \quad q' - 1 \equiv -(q + 1), \quad q - 3 \equiv -(q' + 3), \quad q' - 3 \equiv -(q + 3) \pmod{p}$$

and the first four results, as desired.

Proposition 15. The p-squares $N^+_p, N^+_q, N^-_p, N^-_q$ are complete Latin.

Proof. Since $\gcd(q, p) = 1$, $\gcd(q', p) = 1$, and $\gcd(3, p) = 1$, definitions (15)-(18) imply that $N^+_p, N^+_q, N^-_p, N^-_q$ are Latin squares.

Since for $i, j \in [1, p]$ it holds that

$$(N^+_p)_{ir}, r_{p(i+j)} = r_p(iq + (i + j)) = r_p(i(q + 1) + j),$$

$$(N^+_{q'})_{ir}, r_{p(i+j)} = r_p(iq' + (i + j)) = r_p(i(q' + 1) + j),$$

$$(N^-_p)_{ir}, r_{p(i+j)} = r_p(iq + 3(i + j)) = r_p(i(q + 3) + 3j),$$

$$(N^-_{q'})_{ir}, r_{p(i+j)} = r_p(iq' + 3(i + j)) = r_p(i(q' + 3) + 3j),$$

$$(N^+_p)_{ir}, r_{p(-i+j)} = r_p(iq + (-i + j)) = r_p(i(q - 1) + j),$$

$$(N^+_{q'})_{ir}, r_{p(-i+j)} = r_p(iq' + (-i + j)) = r_p(i(q' - 1) + j),$$

$$(N^-_p)_{ir}, r_{p(-i+j)} = r_p(iq + 3(-i + j)) = r_p(i(q - 3) + 3j),$$

$$(N^-_{q'})_{ir}, r_{p(-i+j)} = r_p(iq' + 3(-i + j)) = r_p(i(q' - 3) + 3j),$$

Lemma 14 implies that $N^+_p, N^+_q, N^-_p, N^-_q$ are complete. q.e.d.
Proposition 16. The p-squares N^+_N, N^-_N are of $(1, 3)$-Lupe property.

Proof. By virtue of Lemma 7, to prove $(1, 3)$-Lupe property of $N := N^+_N$ or N^-_N we may show that if

$$P = [0, A - 1]_p^2, \quad Q = [A + d, A + d + B - 1]_p \times [A + d', A + d' + 3B - 1]_p,$$

then $N(P \cup Q) = [1, p]_p$.

By Proposition 11, if

$$Q_1 = [0, B - 1]_p \times [A, A + 3B - 1]_p,$$

then $N(P \cup Q_1) = [1, p]_p$. We note that $Q = T_{(d + A, d - B)}(Q_1)$. We also note that $N^+_N \circ T_{(d + A, d - B)} = N^+_N$. In fact,

$$N^+_N \circ T_{(d + A, d - B)}(i, j) - N^+_N(i, j) = r_p(q(i + d + A) + (j + d - B)) - r_p(qi + j)
\quad = r_p(q(d + A) + d - B)
\quad = r_p(d(q + 1) + Aq - B)
\quad = r_p(-2B + 3B - B) = 0.$$

It follows that

$$N^+_N(Q_1) = N^+_N \circ T_{(d + A, d - B)}(Q_1) = N^+_N(Q).$$

Thus,

$$N^+_N(P \cup Q) = N^+_N(P) \cup N^+_N(Q) = N^+_N(P) \cup N^+_N(Q_1) = N^+_N(P \cup Q_1) = [1, p]_p.$$

On the other hand, by Proposition 12 if

$$Q_2 = [A - B, A - 1]_p \times [A, A + 3B - 1]_p,$$

then $N(P \cup Q_2) = [1, p]_p$. We note that $Q = T_{(d + B, d - B)}(Q_2)$. We also note that $N^-_N \circ T_{(d + B, d - B)} = N^-_N$. In fact,

$$N^-_N \circ T_{(d + B, d - B)}(i, j) - N^-_N(i, j) = r_p(q'(i + d + B) + (j + d - B)) - r_p(q'i + j)
\quad = r_p(q'(d + B) + d - B)
\quad = r_p(d(q' + 1) + Bq' - B)
\quad = r_p(-A + B + A - B) = 0.$$
It follows that
\[N^+_+(Q_2) = N^-_+ \circ T_{(d+B,d-B)}(Q_2) = N^-_+ (Q). \]
Thus,
\[N^+_+(P \cup Q) = N^+_+(P) \cup N^+_+(Q_2) = N^+_+(P) \cup N^+_+(Q_2) = N^+_+(P \cup Q_2) = [1,p]_p, \]
as desired.

Because of \(\gcd(q,p) = 1 \), \(\gcd(q',p) = 1 \), the functions \(y, y' : [1,p]_p \rightarrow [1,p]_p \) defined by
\[
\begin{align*}
y(j) &:= r_p(jq), \\
y'(j) &:= r_p(jq')
\end{align*}
\]
are permutations on \([1,p]_p\).

Proposition 17. If \(y, y' \) are the permutations defined by (36), (37), then
\[y' \circ N^+_+ = \iota N_-, \quad y \circ N^+_+ = \iota N_+^- . \]

Proof. We have
\[
\begin{align*}
y'(i,j) &:= r_p(jq + j) \\
&= r_p((iq + j)q') \\
&= r_p(iqq' + jq') \\
&= r_p((3i + jq') (\text{ by (14)}) \\
&= \iota(N^-_+)(i,j).
\end{align*}
\]
Similarly, we have
\[
\begin{align*}
y(i,j) &:= r_p(iq' + j) \\
&= r_p((iq' + j)q) \\
&= r_p(iqq' + jq) \\
&= r_p((3i + jq) (\text{ by (14)}) \\
&= \iota(N^-_+)(i,j),
\end{align*}
\]
Proposition 18. The p-squares N_+^-, N_-^- possess $(3, 1)$-Lupe property.

Proof. By Proposition 16, the p-squares $y' \circ N_+^+$, $y \circ N_+^-$ possess $(1, 3)$-Lupe property, so that by Proposition 17, the p-squares N_-, N_- possess $(3, 1)$-Lupe property.

Proposition 19. The product

$$N_+^+ \times N_-^+ := ([1, p]_p^2 \ni (i, j) \mapsto (N_+^+(i, j), N_-^+(i, j)) \in [1, p]_p^2)$$

is an Euler square, that is $\text{Image}(N_+^+ \times N_-^+) = [1, p]_p^2$.

Proof. Let $i \in [1, p]_p$. Then for $j \in [1, p]_p$, we have

$$N_+^+(i, j) = 0 \iff qi + j \equiv 0 \pmod{p} \iff j \equiv -qi \pmod{p} \iff j \equiv q'i \pmod{p}.$$

Then, $N_+^+(i, q'i) = 0$ and $N_+^+(i, q'i) = r_p(2q'i)$. Since p is odd, $\gcd(2q', p) = \gcd(q', p) = 1$, so that

$$\{(N_+^+ \times N_-^+)(i, iq') | i \in [1, p]_p\} = \{0\} \times [1, p]_p.$$

For $v \in [1, p]_p$, we have

$$N_+^+(i, iq' + v) = r_p(N_+^+(i, iq') + v) = v,$$

$$N_-^+(i, iq' + v) = r_p(N_-^+(i, iq') + v) = r_p(2q'i + v).$$

Thus,

$$\{(N_+^+ \times N_-^+)(i, iq' + v) | i \in [1, p]_p\} = \{v\} \times [1, p]_p,$$

so that $\text{Image}(N_+^+ \times N_-^+)$ contains

$$\bigcup_{v \in [1, p]_p} (\{v\} \times [1, p]_p) = [1, p]_p^2,$$

as desired.
Proposition 20. The product $N_+^- \times N_-^-$ is an Euler square.

Proof. Let $j \in [1, p]$. For $i \in [1, p]$, we have

$$N_+^-(i, j) = 0 \iff qi + 3j \equiv 0 \pmod{p}$$
$$\iff q(i - qj) \equiv 0 \pmod{p} \quad \text{(by (13))}$$
$$\iff i \equiv qj \pmod{p} \quad \text{(by gcm}(q, p) = 1).$$

For $v \in [1, p]$, it follows that

$$N_+^-(qj + v, j) = N_+^-(qj, j) + r_p(vq) = r_p(vq),$$
$$N_-^-(qj + v, j) = r_p((qj + v)q' + 3j) = r_p(6j + vq').$$

Since gcm$(6, p) = 1$, it follows that

$$\{(N_+^- \times N_-^-)(qj + v, j) | j \in [1, p]\} = \{r_p(vq)\} \times [1, p].$$

It follows that $\text{Image}(N_+^- \times N_-^-)$ contains

$$\bigcup_{v \in [1, p]} \{r_p(vq)\} \times [1, p] = [1, p]^2,$$

as desired.

Theorem 21. Let $\theta, \psi : [1, p] \to [1, p]$ be permutations with $\theta(0) = 0, \psi(0) = 0$. If $N_+^+, N_-^+ : [1, p]^2 \to [1, p]$ are defined by

$$(N_+^+)_{ij} := \theta(r_p(iq + j)),
(N_-^+)_{ij} := \psi(r_p(iq' + j)),$$

then the p-squares $pN_+^+ + N_+^-$ and $N_+^+ + pN_-^-$ are complete p-magic squares of $(1, 3)$-Lupe property.

If $N_+^-, N_-^- : [1, p]^2 \to [1, p]$ are defined by

$$(N_+^-)_{ij} := \theta(r_p(iq + 3j)),
(N_-^-)_{ij} := \psi(r_p(iq' + 3j)),$$
then the p-squares pN_++N_- and N_++pN_- are complete p-magic squares of $(3,1)$-Lupe property.

Proof. Set $M^+ := pN_++N_-$ or $:= N_++pN_-$, and $M^- := pN_--N_-$ or $:= N_--pN_-$. By Proposition 19 combining Proposition 15, M^+ becomes a complete magic square. Proposition 20 as well as Proposition 15 implies that M^- becomes a complete magic square. By Proposition 16 M^+ is of $(1,3)$-Lupe property and by Proposition 18 M^- is of $(3,1)$-Lupe property. The proof is complete.

References

Department of Mathematics
University of Toyama
Gofuku, Toyama 930-8555
JAPAN
Email: azuk@sci.u-toyama.ac.jp

(Received November 4, 2010)